e5 貨幣金融學 v2 蔣先玲
第一節 金融市場概述
金融市場 (financial market) ,是指貨幣資金融通和金融資產交換的場所。在這個市場上,各類經濟主體進行資金融通,交換風險,從而提高整個社會資源配置的效率。參與金融市場的各類經濟主體包括個人、企業、政府、金融機構和中央銀行五類,它們根據自己的需要選擇充當資金供給方(投資方)或資金需求方(籌資方)。
一、金融市場的特徵
隨著現代市場經濟的發展,金融市場也在不斷髮展,它不僅和人們的生活發生著日益緊密的聯繫,而且處於現代市場體系的核心地位。同商品市場相比,金融市場有著自己的特點。
(一)交易對象為金融工具
金融工具,是指在金融活動中產生的能夠證明金融交易金額、期限、價格的合法憑證,是一種具有法律效力的契約。既包括政府債券、公司股票和債券、商業票據、銀行可轉讓大額定期存單,也包括金融期貨、期權等衍生金融資產,這些金融工具是一定金額貨幣資金的載體。有時,人們將金融工具與金融資產相互替代。實際上,金融資產與金融工具是有區別的:通常,金融工具是從籌資者角度講的,即通過發行金融工具籌集資金;金融資產則是從投資者角度講的,即通過買賣金融資產賺取投資收益。
金融工具具有流動性、償還性、收益性、風險性等特徵。
(二)交易價格表現為資金的合理收益率
金融市場上交易對象的價格體現為不同期限資金借貸的合理收益率。在金融市場上,金融資產的交易過程就是它的定價過程,而金融資產的價格反映了貨幣資金需求者的融資成本和貨幣資金供應者的投資收益。因而,金融資產的定價機制也是金融市場的核心機制。無風險資產一般只包含無風險收益率——基礎收益,而風險資產的收益率還包含風險溢價——風險收益。瞭解無風險收益和風險收益的區別和各自的決定機制,對於投資成功至關重要。
(三)交易目的表現為讓渡或獲得資金的使用權
金融市場上的交易目的主要體現為使用權而不是所有權的交易,這與商品市場有顯著的區別。資金盈餘單位以各種方式讓渡一定時期一定數量資金的使用權,是為了獲得利息或收益;而資金短缺單位則通過各種渠道獲得一定時期一定數量資金的使用權,代價是要支付資金使用成本。
(四)交易場所表現為有形或無形
傳統的商品市場往往是一個有固定場所的有形市場,而金融市場不一定都有固定的場所。金融市場大致分兩種情況:一是交易所方式,或稱有形市場,即交易者集中在有固定地點和交易設施的場所內進行金融產品交易,如常見的銀行、證券交易所就是典型的有形市場;二是櫃檯方式,或稱無形市場,是指交易者分散在不同地點(機構)或採用電信手段進行交易的市場,如場外交易市場和全球外匯市場就屬於無形市場。
二、金融市場的分類
金融市場是一個大系統,這一系統由許多具體的、相互獨立但又有緊密關聯的市場組成,可以按不同的劃分標準進行分類。以下進行主要類型的介紹。
1.債權市場和股權市場
資金需求者在金融市場上可以通過兩種方式籌集資金。
最常見的方式是通過各種債務工具 (debt instruments) 來籌集資金。由債務工具交易形成的市場被稱為債權市場。如發行債券或申請抵押貸款,這種工具是一種契約型合同,標明在未來某一時間,由借款者(債務人)向貸款者(債權人)支付合約約定的利息及償還本金。1年以內到期的被稱為短期債務工具,到期日在1~10年的被稱為中期債務工具,到期日在10年或者更長的被稱為長期債務工具。
另一種方式是通過股權憑證 (equities) 來籌集資金,包括髮行股票、認購權證及存託憑證、股權基金、風險投資基金等。由股權交易所形成的市場被稱為股權市場。股權憑證承諾持有者按份額享有公司的淨收益和資產。通常,股權憑證的持有者可以得到定期支付(股利,dividend)。由於這種工具沒有到期日,因此被視為長期證券。
雖然一般的公眾對於股票市場比其他金融市場更加熟悉,但無論在發達國家還是發展中國家,債券市場的規模通常都遠遠大於股票市場的規模。其原因參見第二章金融機構存在的理論分析。
2.現貨市場和期貨市場
按照金融工具的交割時間,金融市場可劃分為現貨市場和期貨市場。
現貨市場 (spot market) ,是指現金交易市場,即買者付出現款,收進證券或票據;賣者交付證券或票據,收進現款。這種交易一般是當天成交、當天交割,原則上最多不能超過3個營業日。
期貨市場 (futures market) ,是指在成交日之後合約規定的特定日期,如幾周、幾個月之後進行交割。較多采用期貨交易形式的,主要是證券市場、外匯市場、黃金市場等。20世紀70年代以來,金融期貨交易的形式越來越多樣,其交易量已大大超過現貨交易的數量。
3.一級市場和二級市場
按照金融工具交易的順序,金融市場可劃分為一級市場和二級市場。
一級市場 (primary market) ,是指籌集資金的公司或政府機構將其新發行的股票或債券等證券銷售給最初購買者的金融市場。一級市場的主要功能是籌集資金。投資銀行(證券公司)是一級市場上協助證券發行的重要金融機構。
二級市場 (secondary market) ,是指交易已經發行的證券的金融市場。當一個人在二級市場上買入證券時,出售證券的人通過讓渡證券獲取了貨幣收入。但是,發行該證券的公司卻並沒有得到新的資金。公司只有在其證券在一級市場上首次發行時,才能獲取資金。但無論如何,二級市場仍發揮著以下兩個重要功能:一是流動性功能。二級市場使投資者可以更加容易和快捷地出售金融工具,提高了金融工具的流動性,也就增強了金融工具在金融市場上的接受度,從而使得發行公司在一級市場上的銷售變得更加容易。二是價格發現功能。二級市場決定了發行公司在一級市場銷售證券的價格,因為投資者在一級市場上購買證券的價格,不會高於其對二級市場上該證券價格的預期。二級市場上證券價格越高,發行公司在一級市場上銷售證券的價格就越高,它們所籌集到的資金規模也就越大。
4.貨幣市場和資本市場
按照金融工具的期限,金融市場可劃分為貨幣市場和資本市場。
貨幣市場 (money market) ,是指交易期限在1年及1年以下的短期資金融通的市場,包括銀行同業拆借市場、銀行間債券市場、大額定期存單市場、商業票據市場等子市場。這一市場的金融工具期限一般很短,流動性高,類似於貨幣,因此被稱為貨幣市場。貨幣市場是金融機構調節流動性的重要場所,是中央銀行貨幣政策操作的基礎。
資本市場 (capital market) ,是指交易期限在1年以上的長期資金融通的市場,主要包括銀行的長期借貸市場和有價證券市場,如股票市場、債券市場等。由於交易期限較長,流動性較低,資金主要用於實際資本的形成,所以被稱為資本市場。其作用是滿足工商企業的中長期投資需求和解決政府財政赤字的需要。
本章後面部分將按貨幣市場和資本市場的分類進行詳細介紹。
三、金融市場的功能
金融市場通過組織金融工具的交易,發揮著重要的經濟功能。
(一)融通資金功能
融通資金功能,即實現儲蓄向投資轉化的功能,這是金融市場最主要、最基本的功能。金融市場藉助市場機制,聚集了眾多交易主體,創造和提供了各種金融工具和融資平臺,為投資者和籌資者開闢了廣闊的投融資途徑。在這個過程中,金融市場發揮著融通資金的“媒介器”作用。
金融市場這一功能的重要性在於,有多餘資金的經濟主體往往並不是有投資機會的主體。我們假設張某擁有1000元的積蓄,可是找不到合適的投資機會,那麼他就只能持有1000元現金而無任何額外收益。假設李某有一個需要1000元並能賺得年收益200元的投資機會。假定張某能與李某取得聯繫,將1000元貸給他。李某支付100元的利息,自己也能獲得100元的投資收益。這樣,二人的獲利都得到了提高。但是,在缺乏金融市場的情況下,張某與李某也許永遠不會碰在一起。沒有金融市場,很難實現資金從儲蓄者向投資者的轉移。
金融市場為資金供需雙方提供了調節資金餘缺的市場交易機制,從而促進儲蓄向投資轉化,進而促進經濟發展。
(二)優化資源配置功能
優化資源配置功能,是指金融市場通過定價機制自動引導資金的合理配置,進而引導資源從低效益部門向高效益部門流動,從而實現資源的合理配置和有效利用。
假定金融市場上證券的交易價格能反映企業真實的內在價值(包括企業債務的價值和股東權益的價值),則通過金融市場的價格信號,就能引導資金流向最有發展前景、經濟效益最好,並且能為投資者帶來最大利益的行業和部門(因為此類公司的證券價格會一路走高,吸引人們購買),從而引導資金合理流動,實現資源的有效配置和合理利用。
(三)信息傳遞功能
信息傳遞功能,是指金融市場發揮經濟信息集散中心的作用,成為一國經濟、金融形勢的“晴雨表”。首先,從微觀角度看,金融市場能夠為證券投資者提供信息。例如,通過上市公司公佈的財務報表來了解企業的經營狀況,從而為投資決策提供充分的依據。其次,從宏觀角度看,金融市場交易形成的價格指數作為國民經濟的“晴雨表”,能直接或間接地反映出國家宏觀經濟運行狀況。
(四)分散和轉移風險功能
分散和轉移風險功能,是指金融市場的各種金融工具在收益、風險及流動性方面存在差異,投資者可以很容易地採用各種證券組合來分散投資於單一金融資產所面臨的非系統性風險,從而提高投資的安全性和盈利性。但需要明確的是,金融市場只能針對某個局部分散或轉移風險,而非從總體上消除風險。同時,金融市場也發揮著提供流動性的功能,其中包括長短期資金的相互轉換、小額資金和大額資金的相互轉換和不同區域之間的相互轉換。這種轉換有利於靈活調度資金,為投資者和籌資者進行對衝交易、套期保值交易等提供便利,使其可以利用金融市場來轉移和規避風險。
(五)經濟調節功能
金融市場為宏觀管理當局實施宏觀調控提供了場所。例如,金融市場能從總體趨勢上反映國家貨幣供給量的變動趨勢,中央銀行可以根據金融市場上的信息反饋,通過公開市場業務、調整貼現率等手段來調節資金的供求關係,從而保持社會總供求的均衡。在中央銀行貨幣政策工具中,以短期國債為主要交易工具的公開市場業務操作就需要藉助貨幣市場平臺。中央銀行可以在該平臺上影響商業銀行的超額準備和同業拆借市場利率,進而影響金融機構的信用擴展能力。
四、金融市場上的收益與風險
在進入金融市場進行交易之前,我們非常有必要了解收益與風險這一對基本的矛盾。在金融市場上,收益與風險是做任何投資決策時必須考慮的一對矛盾,因為風險與收益是對稱的,高風險則高收益,低風險則低收益。或者說,所有的收益都是要經過風險調整的。俗話說,“天上不會掉餡餅,掉下來的一定是陷阱”。在1952年哈里·馬科維茨(Harry Markowitz)的研究之前,人們對風險與收益的理解大多處於感性階段。馬科維茨第一次用比較精確的數學語言刻畫了風險與收益,從而為資產定價乃至現代金融理論的發展奠定了基礎。
(一)單個資產收益與風險的度量
1.單個資產的預期收益率
對於金融資產而言,收益率是不確定的。因此,“收益”實際上就是投資者在投資之前對未來各種收益率的綜合估計,即預期收益率。從數學角度看,預期收益率實際上是指收益率這個隨機變量的數學期望值,計算公式為:
式中,E(r)表示某種資產的預期收益率;n表示可能遇到的n種情況;ri 表示該資產在第i種情況下的收益率;P(i)表示第i種情況出現的概率,n種情況出現的概率之和等於1。
例如,假定某投資者將1000元投資於某金融資產,持有期為1年。投資者認為該資產1年後有30%的可能上漲到1500元(情況一),有40%的可能下跌到900元(情況二),有30%的可能下跌到800元(情況三),如表4-1所示。
表4-1 某金融資產收益的分佈情況
①收益率的計算公式是:收益率=(期末財富-期初財富)/期初財富。
根據預期收益率的計算公式,可知投資者的預期收益率為5%:
預期收益率=30%×50%+40%×(-10%)+30%×(-20%)=5%
從預期收益率計算可以看出,這只是一種期望值,實際收益很可能偏離期望收益,這就是收益的風險問題。
2.單個資產收益率的風險
在金融投資中,風險是指未來收益的不確定性。它描述的是價格或收益的波動程度,可以用收益對預期收益率的偏離程度來反映。因此,引入數學上的方差概念,我們就可以對風險進行定量分析。方差的公式為:
在實踐中,習慣用方差的平方根,也就是標準差來衡量風險,即
上例中,投資者取得5%的預期收益率的風險是29.75%:
(二)資產組合的預期收益率
金融學的一個基礎假設是投資者是不喜歡風險的,而降低風險的一種有效方法就是構建多樣化的資產組合,或者說“不把所有的雞蛋放在一隻籃子裡”。這時,投資者就需要計算投資組合的預期收益率和風險。
例如,假設兩種不同的證券,其可能的波動情況如表4-2所示。
表4-2 兩種不同證券的收益分佈情況 (%)
1.資產組合的預期收益率計算
資產組合的預期收益率,是指資產組合中所有資產預期收益率的加權平均值,計算公式為:
式中,E(rp )表示資產組合的預期收益率;E(rj )表示資產組合中j資產的預期收益率;wj 表示j資產在資產組合中所佔的比重;m是資產組合中的資產數目。
假定投資者選擇表4-2中的兩種證券進行組合投資,A、B資產各投資50%,則這一組合投資的預期收益率為5.6%:
E(rp )=6.2%×50%+5%×50%=5.6%
2.資產組合的風險
首先必須明確,資產組合的風險並不等於單個資產風險的簡單加權平均。因為資產組合的風險不僅與組合中單個資產的風險有關,還與各種資產之間的相互關係有關,簡單的加權平均計算並沒有反映出組合內各種資產收益率之間的相互關係。在考慮投資資產組合時,我們不僅要關注組合內單個資產的風險,還要考慮不同資產之間的相互關係。以股票組合為例,我們發現煤炭股和電力股的市場表現是不一致的。一般來說,當煤炭價格上漲時,煤炭公司的股票通常都會上漲;而電力公司(主要是指火力發電公司)由於發電成本上升,其股票價格通常都會下跌。反之,當煤炭價格下降時,煤炭公司的股票價格會下跌;而電力公司的股票價格會上漲。如果投資者同時投資這兩種股票,則這兩種股票的收益率波動在一定程度上相互抵消。對於由這兩種股票構成的資產組合,收益率的變化幅度就沒有單個股票投資的變化幅度大,因而風險會降低。為了反映資產組合中各種資產收益率之間的關係,我們需要引入統計學上協方差和相關係數的概念。
協方差 (covariance) ,是指描述兩個隨機變量協同變化程度的方差。在金融投資中,用資產組合中每種金融資產的可能收益與其期望收益之間的離差之積,乘以相應情況出現的概率後進行加總,所得總和就是該資產組合的協方差。
式中,E(X)與E(Y)分別為兩個隨機變量X與Y的數學期望,Cov(X,Y)為X與Y的協方差。
你可能注意到,協方差的公式與前面介紹的方差公式很相似。實際上可以把它們視為同一公式,因為一個隨機變量的方差就是這個隨機變量與自身的協方差。在協方差公式裡,把Y和它的期望值換成X和它的期望值,就能夠領會這一點。
注意到在這個公式裡,當X的結果大於它的期望值時,如果Y的結果也大於它的期望值,則括號裡的項都是正數,它們的乘積也是正數。與之相似,當X的結果小於它的期望值時,如果Y的結果也小於它的期望值,則括號裡的項都是負數,它們的乘積也將是正數。因此,當X和Y沿相同方向變化時,X和Y的協方差為正數,即兩個隨機變量呈正相關關係。在金融投資中,這就表明兩種資產的收益率呈現正相關關係。
相反,如果X和Y沿相反方向變化,那麼括號中的乘積將為負數,結果是二者的協方差為負數,二者呈負相關關係。在金融投資中,這就表明兩種資產的收益率呈現負相關關係。
因此,協方差的符號(正或負)可以反映出資產組合中兩種資產之間不同的相互關係:如果協方差為正,就表明兩種資產的收益率呈同向變動趨勢,即在任何一種情況下同時上升或同時下降;如果協方差為負,則反映出兩種資產的收益率具有反向變動關係,即在任何一種情況下一種資產收益率的上升伴隨著另一種資產收益率的下降;如果協方差為零,則表明兩種資產的收益率之間沒有相關關係。而且,協方差的絕對值越大,則表明這兩種資產報酬率的關係越密切;絕對值越小,則這兩種資產報酬率的關係越疏遠。
現在,我們來計算表4-2中證券A與證券B的協方差。
Cov(A,B)=(12%-6.2%)(10%-5%)×35%+(10%-6.2%)(5%-5%)×40%+(-8%-6.2)(-2%-5%)×25%=0.0035
即證券A與證券B的協方差為0.0035,表明這兩個金融資產之間呈現正相關關係。但是,這種關係對資產組合風險的影響是大還是小呢?這就要引入相關係數的概念了。
相關係數 (correlation coefficient) ,經常用希臘字母ρ表示,它等於兩種資產的協方差除以兩種資產各自的標準差的乘積,即將協方差進行標準化。X與Y的相關係數在數學上被定義為:
式中,Cov(X,Y)為X與Y的協方差;σX ·σY 分別為X與Y的方差。
相關係數的一個重要性質是它總是在-1至+1之間。相關係數的絕對值越大,表明兩種資產之間的相關性就越高。如果相關係數為1,表明兩種資產完全正相關;如果相關係數為-1,表明兩種資產完全負相關;如果相關係數為0,則表明兩種資產不相關或相互獨立。直觀地說,相關係數為0,意味著X的結果不受Y的結果的影響。
現在,我們來計算表4-2中證券A與證券B的相關係數。由前面的計算可知,
結果表明,證券A與證券B呈較強的正相關關係。那麼由這兩種資產構成的組合能否達到降低風險的目的呢?下面我們來介紹資產組合的標準差公式。
計算資產組合風險的一般公式是:
式中,σP 表示資產組合收益率的風險;下標i、j表示第i、j種資產;ρij 表示第i種資產收益率和第j種資產收益率之間的相關係數。
從資產組合收益率的標準差公式可以看出,資產組合的風險不僅依賴於各個資產本身的風險,還依賴於各資產之間的相關係數。由於資產組合風險公式的前面一項取值為正,第二項其他變量都為正數,只有相關係數的取值在-1至+1之間,因此我們得出結論,當相關係數小於1時,資產組合的風險小於單個資產風險的加權平均值,相關係數越小,越趨向於-1,通過多樣化降低風險的效果越好。
如果投資組合由兩種資產構成,即n=2,則有:
以表4-2的數據為例,通過上述計算我們發現A、B的相關係數為0.95,則該資產組合的標準差為:
顯然,由證券A和證券B構成的資產組合的風險小於證券A的風險,但大於證券B的風險。不難求出組合後的風險僅略低於兩種證券的加權風險6.3%(=(8%+4.6%)/2)。這是因為兩種資產之間的相關係數接近於1,所以這種組合降低風險的效果並不是很理想。因此,在進行組合投資時,不要盲目地多樣化投資。
(三)系統性風險與非系統性風險
系統性風險的概念首次出現在諾貝爾經濟學獎得主威廉·夏普(William F.Sharpe)於1964年發表的《資本資產價格:一個風險條件下的市場均衡理論》一文中。為了解釋分散投資降低風險的原因,夏普將上述馬科維茨組合理論的資產總風險分解為系統性風險(systematic risk)和非系統性風險(unsystematic risk)。
所謂系統性風險,也稱不可分散風險或不可控風險,是指具有同類股票和債券的所有證券共同面臨的證券風險部分,是不能通過分散而消除的那類風險。通俗地講,即資產組合中無法消除的風險被稱為系統性風險。
反之,可以通過構造充分分散化的投資組合完全消除的風險就被稱為非系統性風險。非系統性風險是由股份公司自身的某種原因引起證券價格波動的風險。它只存在於相對獨立的範圍,或者個別行業中,來自企業內部的微觀因素。這種風險產生於某一證券或某一行業的獨特事件,如破產、違約等,與整個證券市場不發生系統性的聯繫。
圖4-1 資產組合的總風險構成
因此,資產組合總風險=系統性風險+非系統性風險。
隨著資產組合中資產數量的增加,非系統性風險呈遞減趨勢,而系統性風險一般表現為不變的常數,如圖4-1所示。
專欄4-1
集中還是分散,這是一個問題
有這樣一個故事:傑克先生和羅賓遜先生是鄰居。有一天,一個小孩子在街頭玩棒球,不小心打破了傑克先生的窗戶,他花了10美元才修好。後來,小孩子又把羅賓遜先生的窗戶打破了,但是他只花了10美分就修好了。其原因就是羅賓遜先生家的窗戶是多格的。這個故事被用來說明分散投資對於迴避風險的重要性。另一個經常被用來說明分散投資的價值的例子是雞蛋和籃子。不過,把雞蛋(資金)放到不同的籃子(投資品種)裡,真的可以降低風險嗎?
1.選擇幾個互不相關的籃子
投資者虧損時,經常會發現自己手頭持有了一堆股票,各種質地、各種行業屬性的股票都可能存在於資產組合中。投資者的困惑通常就是,為什麼分散投資了仍然沒有避免風險。實際上,即使是分散投資,在面對宏觀經濟回落、行業發展趨勢惡化等系統性風險時,也無法避免資產縮水。或者我們可以這樣理解,最重要的不是把雞蛋放到幾個籃子裡,而是選擇幾個互不相關的籃子。否則,如果幾個裝滿雞蛋的籃子同時落下,可能根本沒有時間去考慮究竟該接住哪一個籃子最好。
2.分散化降低了盈利能力
實際上,除了在面對系統性風險時難以規避資產縮水,分散投資的另一個不足之處在於,這種投資策略在一定程度上降低了資產組合的利潤提升能力。舉個簡單的例子:同樣為10元的初始資金,股票價格均為1元,組合A由10只股票組成,每隻股票買1股;組合B由5只股票組成,每隻股票買2股。假設在這些股票中,組合B的5只股票,組合A也都購買了。其後這5只股票價格翻番,而其他的股票價格沒有變化,則組合A、組合B的收益率分別為50%和100%。很顯然,由於組合A投資過於分散,那些沒有上漲的股票拉低了整個投資組合的收益水平。
曾有人這樣描述:分散投資獲得巨大財富,這是投資的謊言之一。從來沒有一個人因為分散化投資策略進入億萬富翁俱樂部。
3.集中投資是大師的選擇
對於分散和集中,那些投資大師們又是如何選擇的呢?索羅斯說:“當你對一筆交易有信心時,你必須全力出擊。持有大頭寸需要勇氣,或者說用鉅額槓桿挖掘利潤需要勇氣,但是如果你對某件事情判斷正確,你擁有多少都不算多。”投資大師將集中投資的成功前提闡述得非常明確——必須判斷準確。準確判斷是集中投資的必要前提條件之一。
實際上,集中是投資決策的必然結果,而不是投資手段。在時間和精力有限的情況下,你有可能去了解少部分股票所有需要了解的信息,但是絕對不可能瞭解一大批股票所有需要了解的信息,簡單地說就是投資者只能去研究相對少的投資品種。從另一個角度看,分散投資成功的大前提仍然是判斷的準確性。如果沒有準確的判斷,單純依靠在不同的金融市場或者同一市場的不同投資品種上分散投資,是不可能取得良好的投資效果的。